Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38059400

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50 ) values ranging from 1.42 to 32.7 µM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50 ) values of 21.73 and 31.19 µM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38157153

RESUMO

The peroxiredoxins (Prxs), potential drug targets, constitute an important class of antioxidant enzymes present in both pathogen and their host. The comparative binding potential of inhibitors to Prxs from pathogen and host could be an important step in drug development against pathogens. Huanglongbing (HLB) is a most devastating disease of citrus caused by Candidatus Liberibacter asiaticus (CLa). In this study, the binding of conoidin-A (conoidin) and celastrol inhibitor molecules to peroxiredoxin of bacterioferritin comigratory protein family from CLa (CLaBCP) and its host plant peroxiredoxin from Citrus sinensis (CsPrx) was assessed. The CLaBCP has a lower specific activity than CsPrx and is efficiently inhibited by conoidin and celastrol molecules. The biophysical studies showed conformational changes and significant thermal stability of CLaBCP in the presence of inhibitor molecules as compared to CsPrx. The surface plasmon resonance (SPR) studies revealed that the conoidin and celastrol inhibitor molecules have a strong binding affinity (KD) with CLaBCP at 33.0 µM, and 18.5 µM as compared to CsPrx at 52.0 µM and 61.6 µM, respectively. The docked complexes of inhibitor molecules showed more structural stability of CLaBCP as compared to CsPrx during the run of molecular dynamics-based simulations for 100 ns. The present study suggests that the conoidin and celastrol molecules can be exploited as potential inhibitor molecules against the CLa to manage the HLB disease.

3.
Arch Biochem Biophys ; 750: 109820, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956938

RESUMO

The nucleocapsid (N) protein of SARS-CoV-2 plays a pivotal role in encapsulating the viral genome. Developing antiviral treatments for SARS-CoV-2 is imperative due to the diminishing immunity of the available vaccines. This study targets the RNA-binding site located in the N-terminal domain (NTD) of the N-protein to identify the potential antiviral molecules against SARS-CoV-2. A structure-based repurposing approach identified the twelve high-affinity molecules from FDA-approved drugs, natural products, and the LOPAC1280 compound libraries that precisely bind to the RNA binding site within the NTD. The interaction of these potential antiviral agents with the purified NTD protein was thermodynamically characterized using isothermal titration calorimetry (ITC). A fluorescence-based plate assay to assess the RNA binding inhibitory activity of small molecules against the NTD has been employed, and the selected compounds exhibited significant RNA binding inhibition with calculated IC50 values ranging from 8.8 µM to 15.7 µM. Furthermore, the antiviral efficacy of these compounds was evaluated using in vitro cell-based assays targeting the replication of SARS-CoV-2. Remarkably, two compounds, Telmisartan and BMS-189453, displayed potential antiviral activity against SARS-CoV-2, with EC50 values of approximately 1.02 µM and 0.98 µM, and a notable selective index of >98 and > 102, respectively. This study gives valuable insight into developing therapeutic interventions against SARS-CoV-2 by targeting the N-protein, a significant effort given the global public health concern posed due to the virus re-emergence and long COVID-19 disease.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Síndrome Pós-COVID-19 Aguda , Nucleocapsídeo/metabolismo , Termodinâmica , RNA , Simulação de Acoplamento Molecular
4.
J Struct Biol ; 215(4): 108034, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37805153

RESUMO

Transcription is carried out by the RNA polymerase and is regulated through a series of interactions with transcription factors. Catabolite activator repressor (Cra), a LacI family transcription factor regulates the virulence gene expression in Enterohaemorrhagic Escherichia coli (EHEC) and thus is a promising drug target for the discovery of antivirulence molecules. Here, we report the crystal structure of the effector molecule binding domain of Cra from E. coli (EcCra) in complex with HEPES molecule. Based on the EcCra-HEPES complex structure, ligand screening was performed that identified sulisobenzone as an potential inhibitor of EcCra. The electrophoretic mobility shift assay (EMSA) and in vitro transcription assay validated the sulisobenzone binding to EcCra. Moreover, the isothermal titration calorimetry (ITC) experiments demonstrated a 40-fold higher binding affinity of sulisobenzone (KD 360 nM) compared to the HEPES molecule. Finally, the sulisobenzone bound EcCra complex crystal structure was determined to elucidate the binding mechanism of sulisobenzone to the effector binding pocket of EcCra. Together, this study suggests that sulisobenzone may be a promising candidate that can be studied and developed as an effective antivirulence agent against EHEC.


Assuntos
Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Escherichia coli/metabolismo , Proteínas Repressoras/genética , HEPES/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligação Proteica
5.
J Struct Biol ; 215(3): 107992, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394197

RESUMO

Of the two putative amino acid binding periplasmic receptors of ABC transporter family in Candidatus Liberibacter asiaticus (CLas), cystine binding receptor (CLasTcyA) has been shown to mainly express in phloem of citrus plant and is a target for inhibitor development. The crystal structure of CLasTcyA in complex with substrates has been reported earlier. The present work reports the identification and evaluation of potential candidates for their inhibitory potential against CLasTcyA. Among many compounds, selected through virtual screening, and MD simulation, pimozide, clidinium, sulfasalazine and folic acid showed significantly higher affinities and stability in complex with CLasTcyA. The SPR studies with CLasTcyA revealed significantly higher binding affinities for pimozide and clidinium (Kd, 2.73 nM and 70 nM, respectively) as compared to cystine (Kd, 1.26 µM). The higher binding affinities could be attributed to significantly increased number of interactions in the binding pocket as evident from the crystal structures of CLasTcyA in complex with pimozide and clidinium as compared to cystine. The CLasTcyA possess relatively large binding pocket where bulkier inhibitors fit quite well. In planta studies, carried out to assess the effect of inhibitors on HLB infected Mosambi plants, showed significant reduction in CLas titre in plants treated with inhibitors as compared to control plants. The results showed that pimozide exhibited higher efficiency as compared to clidinium in reducing CLas titre in treated plants. Our results showed that the inhibitor development against critical proteins like CLasTcyA can be an important strategy in management of HLB.


Assuntos
Rhizobiaceae , Cistina/farmacologia , Pimozida/farmacologia , Doenças das Plantas
6.
Eur J Med Chem ; 258: 115572, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37364511

RESUMO

The Togaviridae family comprises several New- and Old-World Alphaviruses that have been responsible for thousands of human illnesses, including the RNA arbovirus Chikungunya virus (CHIKV). Firstly, it was reported in Tanzania in 1952 but rapidly it spread to several countries from Europe, Asia, and the Americas. Since then, CHIKV has been circulating in diverse countries around the world, leading to increased morbidity rates. Currently, there are no FDA-approved drugs or licensed vaccines to specifically treat CHIKV infections. Thus, there is a lack of alternatives to fight against this viral disease, making it an unmet need. Structurally, CHIKV is composed of five structural proteins (E3, E2, E1, C, and 6k) and four non-structural proteins (nsP1-4), in which nsP2 represents an attractive antiviral target for designing novel inhibitors since it has an essential role in the virus replication and transcription. Herein, we used a rational drug design strategy to select some acrylamide derivatives to be synthesized and evaluated against CHIKV nsP2 and also screened on CHIKV-infected cells. Thus, two regions of modifications were considered for these types of inhibitors, based on a previous study of our group, generating 1560 possible inhibitors. Then, the 24 most promising ones were synthesized and screened by using a FRET-based enzymatic assay protocol targeting CHIKV nsP2, identifying LQM330, 333, 336, and 338 as the most potent inhibitors, with Ki values of 48.6 ± 2.8, 92.3 ± 1.4, 2.3 ± 1.5, and 181.8 ± 2.5 µM, respectively. Still, their Km and Vmax kinetic parameters were also determined, along with their competitive binding modes of CHIKV nsP2 inhibition. Then, ITC analyses revealed KD values of 127, 159, 198, and 218 µM for LQM330, 333, 336, and 338, respectively. Also, their ΔH, ΔS, and ΔG physicochemical parameters were determined. MD simulations demonstrated that these inhibitors present a stable binding mode with nsP2, interacting with important residues of this protease, according to docking analyzes. Moreover, MM/PBSA calculations displayed that van der Waals interactions are mainly responsible for stabilizing the inhibitor-nsP2 complex, and their binding energies corroborated with their Ki values, having -198.7 ± 15.68, -124.8 ± 17.27, -247.4 ± 23.78, and -100.6 ± 19.21 kcal/mol for LQM330, 333, 336, and 338, respectively. Since Sindbis (SINV) nsP2 is similar to CHIKV nsP2, these best inhibitors were screened against SINV-infected cells, and it was verified that LQM330 presented the best result, with an EC50 value of 0.95 ± 0.09 µM. Even at 50 µM concentration, LQM338 was found to be cytotoxic on Vero cells after 48 h. Then, LQM330, 333, and 336 were evaluated against CHIKV-infected cells in antiviral assays, in which LQM330 was found to be the most promising antiviral candidate in this study, exhibiting an EC50 value of 5.2 ± 0.52 µM and SI of 31.78. The intracellular flow cytometry demonstrated that LQM330 is able to reduce the CHIKV cytopathogenic effect on cells, and also reduce the percentage of CHIKV-positive cells from 66.1% ± 7.05 to 35.8% ± 5.78 at 50 µM concentration. Finally, qPCR studies demonstrated that LQM330 was capable of reducing the number of viral RNA copies/µL, suggesting that CHIKV nsP2 is targeted by this inhibitor as its mechanism of action.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Acrilamidas/farmacologia , Antivirais/química , Febre de Chikungunya/tratamento farmacológico , Chlorocebus aethiops , Células Vero , Replicação Viral
7.
J Trace Elem Med Biol ; 78: 127176, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37075567

RESUMO

Emergence of new pathogenic viruses along with adaptive potential of RNA viruses has become a major public health concern. Therefore, it is increasingly crucial to investigate and assess the antiviral potential of nanocomposites, which is constantly advancing area of medical biology. In this study, two types of nanocomposites: Ag/NiO and Ag2O/NiO/ZnO with varying molar ratios of silver and silver oxide, respectively have been synthesised and characterised. Three metal/metal oxide (Ag/NiO) composites having different amounts of Ag nanoparticles (NPs) anchored on NiO octahedrons are AN-5 % (5 % Ag), AN-10 % (10 % Ag) and AN-15 % (15 % Ag)) and three ternary metal oxide nanocomposites (Ag2O/NiO/ZnO) i.e., A/N/Z-1, A/N/Z-2, and A/N/Z-3 with different molar ratios of silver oxide (10 %, 20 % and 30 %, respectively) were evaluated for their antiviral potential. Cellular uptake of nanocomposites was confirmed by ICP-MS. Intriguingly, molecular docking of metal oxides in the active site of nsP3 validated the binding of nanocomposites to chikungunya virus replication protein nsP3. In vitro antiviral potential of nanocomposites was tested by performing plaque reduction assay, cytopathic effect (CPE) analysis and qRT-PCR. The nanocomposites showed significant reduction in virus titre. Half-maximal inhibitory concentration (IC50) for A/N/Z-3 and AN-5 % were determined to be 2.828 and 3.277 µg/mL, respectively. CPE observation and qRT-PCR results were consistent with the data obtained from plaque reduction assay for A/N/Z-3 and AN-5 %. These results have opened new avenues for development of nanocomposites based antiviral therapies.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Nanopartículas Metálicas , Nanocompostos , Óxido de Zinco , Humanos , Óxido de Zinco/química , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Prata/farmacologia , Óxidos/farmacologia , Óxidos/química , Nanocompostos/química , Replicação Viral , Antivirais/farmacologia
8.
Virology ; 578: 92-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473281

RESUMO

The ever-evolving and versatile VLP technology is becoming an increasingly popular area of science. This study presents surface decorated reporter-tagged VLPs of CHIKV, an enveloped RNA virus of the genus alphavirus and its applications. Western blot, IFA and live-cell imaging confirm the expression of reporter-tagged CHIK-VLPs from transfected HEK293Ts. CryoEM micrographs reveal particle diameter as ∼67nm and 56-70 nm, respectively, for NLuc CHIK-VLPs and mCherry CHIK-VLPs. Our study demonstrates that by exploiting NLuc CHIK-VLPs as a detector probe, robust ratiometric luminescence signal in CHIKV-positive sera compared to healthy controls can be achieved swiftly. Moreover, the potential activity of the Suramin drug as a CHIKV entry inhibitor has been validated through the reporter-tagged CHIK-VLPs. The results reported in this study open new avenues in the eVLPs domain and offer potential for large-scale screening of clinical samples and antiviral agents targeting entry of CHIKV and other alphaviruses.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Vírus Chikungunya/genética , Internalização do Vírus , Antivirais/farmacologia , Microscopia Crioeletrônica
9.
ACS Omega ; 7(43): 38448-38458, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340146

RESUMO

Staphylococcus aureus is considered as one of the most widespread bacterial pathogens and continues to be a prevalent cause of mortality and morbidity across the globe. FmtA is a key factor linked with methicillin resistance in S. aureus. Consequently, new antibacterial compounds are crucial to combat S. aureus resistance. Here, we present the virtual screening of a set of compounds against the available crystal structure of FmtA. The findings indicate that gemifloxacin, paromomycin, streptomycin, and tobramycin were the top-ranked potential drug molecules based on the binding affinity. Furthermore, these drug molecules were analyzed with molecular dynamics simulations, which showed that the identified molecules formed highly stable FmtA-inhibitor(s) complexes. Molecular mechanics Poisson-Boltzmann surface area and quantum mechanics/molecular mechanics calculations suggested that the active site residues (Ser127, Lys130, Tyr211, and Asp213) of FmtA are crucial for the interaction with the inhibitor(s) to form stable protein-inhibitor(s) complexes. Moreover, fluorescence- and isothermal calorimetry-based binding studies showed that all the molecules possess dissociation constant values in the micromolar scale, revealing a strong binding affinity with FmtAΔ80, leading to stable protein-drug(s) complexes. The findings of this study present potential beginning points for the rational development of advanced, safe, and efficacious antibacterial agents targeting FmtA.

10.
Virology ; 577: 1-15, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244310

RESUMO

The nucleotide-binding pockets (NBPs) in virus-specific proteins have proven to be the most successful antiviral targets for several viral diseases. Functionally important NBPs are found in various structural and non-structural proteins of SARS-CoV-2. In this study, the first successful multi-targeting attempt to identify effective antivirals has been made against NBPs in nsp12, nsp13, nsp14, nsp15, nsp16, and nucleocapsid (N) proteins of SARS-CoV-2. A structure-based drug repurposing in silico screening approach with ADME analysis identified small molecules targeting NBPs in SARS-CoV-2 proteins. Further, isothermal titration calorimetry (ITC) experiments validated the binding of top hit molecules to the purified N-protein. Importantly, cell-based antiviral assays revealed antiviral potency for INCB28060, darglitazone, and columbianadin with EC50 values 15.71 µM, 5.36 µM, and 22.52 µM, respectively. These effective antivirals targeting multiple proteins are envisioned to direct the development of antiviral therapy against SARS-CoV-2 and its emerging variants.

12.
J Mol Graph Model ; 116: 108262, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35839717

RESUMO

Klebsiella pneumonia is known to cause several nosocomial infections in immunocompromised patients. It has developed resistance against a broad range of presently available antibiotics, resulting in high mortality rates in patients and declared an urgent threat. Therefore, exploration of possible novel drug targets against this opportunistic bacteria needs to be undertaken. In the present study, we performed an extensive in-silico analysis for functional and structural annotation and characterized HP CP995_08280 from K. pneumonia as a drug target and aimed to identify potent drug candidates. The functional and structural studies using several bioinformatics tools and databases predicted that HP CP995_08280 is a cytosolic protein that belongs to the ß-lactamase family and shares structural similarity with FmtA protein from Staphylococcus aureus (PDB ID: 5ZH8). The structure of HP CP995_08280 was successfully modeled followed by structure-based virtual screening, docking, molecular dynamics, and Molecular mechanic/Poisson-Boltzmann surface area (MMPBSA) were performed to identify the potential compounds. We have found five potent antibacterial molecules, namely BDD 24083171, BDD 24085737, BDE 25098678, BDE 33638819, and BDE 33672484, which exhibited high binding affinity (>-7.5 kcal/mol) and were stabilized by hydrogen bonding and hydrophobic interactions with active site residues (Ser42, Lys45, Tyr126, and Asp128) of protein. Molecular dynamics and MMPBSA revealed that HP CP995_08280 - ligand(s) complexes were less dynamic and more stable than native HP CP995_08280. Hence, the present study may serve as a potential lead for developing inhibitors against drug-resistant Klebsiella pneumonia.


Assuntos
Simulação de Dinâmica Molecular , Pneumonia , Antibacterianos/farmacologia , Humanos , Klebsiella , Ligantes , Simulação de Acoplamento Molecular
13.
Int J Biol Macromol ; 209(Pt A): 1088-1099, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452700

RESUMO

In present work, the recombinant cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis (CsPrx) was purified and characterized. The peroxidase activity was examined with different substrates using DTT, a non-physiological electron donor. The conformational studies, in oxidized and reduced states, were performed using circular dichroism (CD) and fluorescence measurement. The CD analysis showed higher α-helical content for reduced state of the protein. The thermal stability studies of CsPrx by Differential Scanning Calorimetry (DSC) showed that oxidized state is more stable as compared to the reduced state of CsPrx. In vitro studies showed that the CsPrx provides a protective shield against ROS and free radicals that participate in the degradation of plasmid DNA. The pre-treatment of 10 µM CsPrx provide almost 100% protection against peroxide-mediated cell killing in the Vero cells. CsPrx showed significant cell proliferation and wound healing properties. The superior morphology of viable cells and wound closure was found at 20 µM CsPrx treated for 12 h. The results demonstrated that CsPrx is a multifaceted protein with a significant role in cell proliferation, wound healing and protection against hydrogen peroxide-induced cellular damage. This could be the first report of a plant peroxiredoxin being characterized for biomedical applications.


Assuntos
Citrus sinensis , Peroxirredoxinas , Animais , Chlorocebus aethiops , Citrus sinensis/metabolismo , Peróxido de Hidrogênio/química , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Células Vero , Cicatrização
14.
FEBS J ; 289(16): 4901-4924, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35156752

RESUMO

Alphaviruses are continuously re-emerging and pose a global threat to human health and currently no antiviral drug is commercially available for alphaviral infections. Alphavirus non-structural protein nsP4, which possesses RNA-dependent RNA polymerase (RdRp) activity, is a potential antiviral target. To date, no antiviral drug is commercially available against alphaviruses. Since RdRp is the key virus-specific enzyme involved in viral genome replication, this study identifies and validates the antiviral efficacy of small molecules targeting alphavirus RdRp. Purified nsP4 was characterized using the surface plasmon resonance (SPR) assay, and the binding affinities of divalent metal ions, ribonucleotides, and in vitro transcribed viral RNA oligonucleotides were obtained in the micromolar (µm) range. Further, four potential inhibitors, piperine (PIP), 2-thiouridine (2TU), pyrazinamide (PZA), and chlorogenic acid (CGA), were identified against nsP4 RdRp using a molecular docking approach. The SPR assay validated the binding of PIP, 2TU, PZA, and CGA to purified nsP4 RdRp with KD of 0.08, 0.13, 0.66, and 9.87 µm, respectively. Initial testing of these molecules as alphavirus replication inhibitors was done using SINV-IRES-Luc virus. Detailed assessment of antiviral efficacy of molecules against CHIKV was performed by plaque reduction assay, qRT-PCR, and immunofluorescence assay. PIP, 2TU, PZA, and CGA showed antiviral potency against CHIKV with EC50 values of 6.68, 27.88, 36.26, and 53.62 µm, respectively. This study paves the way towards the development of novel broad-spectrum alphavirus antivirals targeting nsP4 RdRp.


Assuntos
Vírus Chikungunya , RNA Polimerase Dependente de RNA , Antivirais/química , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Humanos , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/genética , Ressonância de Plasmônio de Superfície , Replicação Viral
15.
Antimicrob Agents Chemother ; 66(3): e0194321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35041501

RESUMO

Alphaviruses cause animal or human diseases that are characterized by febrile illness, debilitating arthralgia, or encephalitis. Selective estrogen receptor modulators (SERMs), a class of FDA-approved drugs, have been shown to possess antiviral activities against multiple viruses, including hepatitis C virus, Ebola virus, dengue virus, and vesicular stomatitis virus. Here, we evaluated three SERM compounds, namely, 4-hydroxytamoxifen, tamoxifen, and clomifene, for plausible antiviral properties against two medically important alphaviruses, chikungunya virus (CHIKV) and Sindbis virus (SINV). In cell culture settings, these SERMs displayed potent activity against CHIKV and SINV at nontoxic concentrations with 50% effective concentration (EC50) values ranging between 400 nM and 3.9 µM. Further studies indicated that these compounds inhibit a postentry step of the alphavirus life cycle, while enzymatic assays involving purified recombinant proteins confirmed that these SERMs target the enzymatic activity of nonstructural protein 1 (nsP1), the capping enzyme of alphaviruses. Finally, tamoxifen treatment restrained CHIKV growth in the infected mice and diminished musculoskeletal pathologies. Combining biochemical analyses, cell culture-based studies, and in vivo analyses, we strongly argue that SERM compounds, or their derivatives, may provide for attractive therapeutic options against alphaviruses.


Assuntos
Infecções por Alphavirus , Vírus Chikungunya , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Camundongos , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Proteínas não Estruturais Virais , Replicação Viral
16.
J Biomol Struct Dyn ; 40(22): 12048-12061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34448684

RESUMO

The global spread of SARS-CoV-2 has resulted in millions of fatalities worldwide, making it crucial to identify potent antiviral therapeutics to combat this virus. We employed structure-assisted virtual screening to identify phytochemicals that can target the two proteases which are essential for SARS-CoV-2 replication and transcription, the main protease and papain-like protease. Using virtual screening and molecular dynamics, we discovered new phytochemicals with inhibitory activity against the two proteases. Isoginkgetin, kaempferol-3-robinobioside, methyl amentoflavone, bianthraquinone, podocarpusflavone A, and albanin F were shown to have the best affinity and inhibitory potential among the compounds, and can be explored clinically for use as inhibitors of novel coronavirus SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Peptídeo Hidrolases , Papaína , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases , Simulação de Acoplamento Molecular
17.
J Biomol Struct Dyn ; 40(9): 4084-4099, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33251943

RESUMO

The Coronavirus Disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 is an exceptionally contagious disease that leads to global epidemics with elevated mortality and morbidity. There are currently no efficacious drugs targeting coronavirus disease 2019, therefore, it is an urgent requirement for the development of drugs to control this emerging disease. Owing to the importance of nucleocapsid protein, the present study focuses on targeting the N-terminal domain of nucleocapsid protein from severe acute respiratory syndrome coronavirus 2 to identify the potential compounds by computational approaches such as pharmacophore modeling, virtual screening, docking and molecular dynamics. We found three molecules (ZINC000257324845, ZINC000005169973 and ZINC000009913056), which adopted a similar conformation as guanosine monophosphate (GMP) within the N-terminal domain active site and exhibiting high binding affinity (>-8.0 kcalmol-1). All the identified compounds were stabilized by hydrogen bonding with Arg107, Tyr111 and Arg149 of N-terminal domain. Additionally, the aromatic ring of lead molecules formed π interactions with Tyr109 of N-terminal domain. Molecular dynamics and Molecular mechanic/Poisson-Boltzmann surface area results revealed that N-terminal domain - ligand(s) complexes are less dynamic and more stable than N-terminal domain - GMP complex. As the identified compounds share the same corresponding pharmacophore properties, therefore, the present results may serve as a potential lead for the development of inhibitors against severe acute respiratory syndrome coronavirus 2. Communicated by Ramaswamy H. Sarma.


Assuntos
Antivirais , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfoproteínas/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
18.
Curr Microbiol ; 79(1): 20, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905108

RESUMO

The sudden rise in COVID-19 cases in 2020 and the incessant emergence of fast-spreading variants have created an alarming situation worldwide. Besides the continuous advancements in the design and development of vaccines to combat this deadly pandemic, new variants are frequently reported, possessing mutations that rapidly outcompeted an existing population of circulating variants. As concerns grow about the effects of mutations on the efficacy of vaccines, increased transmissibility, immune escape, and diagnostic failures are few other apprehensions liable for more deadly waves of COVID-19. Although the phenomenon of antigenic drift in new variants of SARS-CoV-2 is still not validated, it is conceived that the virus is acquiring new mutations as a fitness advantage for rapid transmission or to overcome immunological resistance of the host cell. Considerable evolution of SARS-CoV-2 has been observed since its first appearance in 2019, and despite the progress in sequencing efforts to characterize the mutations, their impacts in many variants have not been analyzed. The present article provides a substantial review of literature explaining the emerging variants of SARS-CoV-2 circulating globally, key mutations in viral genome, and the possible impacts of these new mutations on prevention and therapeutic strategies currently administered to combat this pandemic. Rising infections, mortalities, and hospitalizations can possibly be tackled through mass vaccination, social distancing, better management of available healthcare infrastructure, and by prioritizing genome sequencing for better serosurveillance studies and community tracking.


Assuntos
COVID-19 , SARS-CoV-2 , Deriva e Deslocamento Antigênicos , Genoma Viral , Humanos
19.
J Biol Chem ; 297(6): 101416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34800435

RESUMO

Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 µM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.


Assuntos
Proteínas de Bactérias/química , Comamonas testosteroni/enzimologia , Oxigenases/química , Proteínas de Bactérias/genética , Catálise , Comamonas testosteroni/genética , Cristalografia por Raios X , Oxigenases/genética , Domínios Proteicos , Especificidade por Substrato
20.
Arch Biochem Biophys ; 713: 109060, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34666048

RESUMO

Catabolite repressor activator (Cra) is a member of the LacI family transcriptional regulator distributed across a wide range of bacteria and regulates the carbon metabolism and virulence gene expression. In numerous studies to crystallize the apo form of the LacI family transcription factor, the N-terminal domain (NTD), which functions as a DNA-binding domain, has been enigmatically missing from the final resolved structures. It was speculated that the NTD is disordered or unstable and gets cleaved during crystallization. Here, we have determined the crystal structure of Cra from Escherichia coli (EcCra). The structure revealed a well-defined electron density for the C-terminal domain (CTD). However, electron density was missing for the first 56 amino acids (NTD). Our data reveal for the first time that EcCra undergoes a spontaneous cleavage at the conserved Asn 50 (N50) site, which separates the N-terminal DNA binding domain from the C-terminal effector molecule binding domain. With the site-directed mutagenesis, we confirm the involvement of residue N50 in the spontaneous cleavage phenomenon. Furthermore, the Isothermal titration calorimetry (ITC) assay of the EcCra-NTD with DNA showed EcCra-NTD is in a functional conformation state and retains its DNA binding activity.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , DNA/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutagênese Sítio-Dirigida , Mutação , Domínios Proteicos , Proteólise , Proteínas Repressoras/química , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...